(→6A) |
(→6A) |
||
Line 5: | Line 5: | ||
'''Proof:''' | '''Proof:''' | ||
− | <math>x(t) \to System \to y(t)= | + | <math>x(t-k) \to System \to y(t)=(k+1)^{2}x(t-k-1) \to Time Shift(t0) \to z(t)=y(t-t0)</math> |
− | <math>\, = | + | <math>\, =(k+1)^{2}x(t-t0-k-1)\,</math> |
− | <math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)= | + | <math>x(t-k) \to Time Shift(t0) \to y(t)=x(t-t0-k) \to System \to z(t)=(k1+1)^{2}y(t-k1-1)</math> |
− | <math>\, = | + | <math>\, =(t0+k+1)^{2}x(t-t0-k-1)\,</math> |
− | + | It is not time invariant. | |
− | + |
Revision as of 17:27, 12 September 2008
6A
$ \,x(t-k) \to System \to y(t)=(k+1)^{2}x(t-k-1)\, $
Proof:
$ x(t-k) \to System \to y(t)=(k+1)^{2}x(t-k-1) \to Time Shift(t0) \to z(t)=y(t-t0) $
$ \, =(k+1)^{2}x(t-t0-k-1)\, $
$ x(t-k) \to Time Shift(t0) \to y(t)=x(t-t0-k) \to System \to z(t)=(k1+1)^{2}y(t-k1-1) $
$ \, =(t0+k+1)^{2}x(t-t0-k-1)\, $
It is not time invariant.