(New page: == 6A == <math>\,y(t)=e^{x(t)}\,</math> '''Proof:''' <math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math> <math>\, ...)
 
(6A)
Line 1: Line 1:
 
== 6A ==
 
== 6A ==
<math>\,y(t)=e^{x(t)}\,</math>
+
<math>\,y(t)=(a+1)^2x(t-a)}\,</math>
  
  

Revision as of 17:21, 12 September 2008

6A

$ \,y(t)=(a+1)^2x(t-a)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Alumni Liaison

EISL lab graduate

Mu Qiao