(E-a)
(E-a)
Line 5: Line 5:
 
<math>Y_k[n] = (k + 1)^2X_k[n-1]</math>
 
<math>Y_k[n] = (k + 1)^2X_k[n-1]</math>
  
<math>X_k[n]\rightarrow system \rightarrow Y_k[n] = (k + 1)^2X_k[n-1]\rightarrow Time\Delay\by\m\rightarrow Z_k[n]=(k+1)^2X_k[n-m-1]</math>
+
<math>X_k[n]\rightarrow system \rightarrow Y_k[n] = (k + 1)^2X_k[n-1]\rightarrow Time Delay by m \rightarrow Z_k[n]=(k+1)^2X_k[n-m-1]</math>
  
 
<math>X_k[n]\rightarrow Time Delay by m\rightarrow Y_k[n] = X_k[n-m]\rightarrow Time  System\rightarrow Z_k[n]=Y_k[n-m]=(k+1)^2X_k[n-m-1]</math>
 
<math>X_k[n]\rightarrow Time Delay by m\rightarrow Y_k[n] = X_k[n-m]\rightarrow Time  System\rightarrow Z_k[n]=Y_k[n-m]=(k+1)^2X_k[n-m-1]</math>

Revision as of 17:17, 12 September 2008

E-a

Yes,the system can be time-invariant.

the system is $ Y_k[n] = (k + 1)^2X_k[n-1] $

$ X_k[n]\rightarrow system \rightarrow Y_k[n] = (k + 1)^2X_k[n-1]\rightarrow Time Delay by m \rightarrow Z_k[n]=(k+1)^2X_k[n-m-1] $

$ X_k[n]\rightarrow Time Delay by m\rightarrow Y_k[n] = X_k[n-m]\rightarrow Time System\rightarrow Z_k[n]=Y_k[n-m]=(k+1)^2X_k[n-m-1] $

Since the outputs match, the system is time-invariant.

E-b

Since the system is linear, the input should be X[n] = u[n] in order to get Y[n]=u[n-1], where k=0

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010