(New page: == LINEARITY == Linearity, in my definition, means that superposition always works. In other words, summation of inputs yield summation of outputs. == Example of Linearity and its proof ...)
 
(Example of Linearity and its proof)
Line 12: Line 12:
 
<math>x2(t) \to System \to y2(t)=x2(2t) \to Scalar multiplication(*b) \to bx2(2t) </math>
 
<math>x2(t) \to System \to y2(t)=x2(2t) \to Scalar multiplication(*b) \to bx2(2t) </math>
  
<math>ax1(2t) and bx2(2t) \to SUM \to '''ax1(2t)+bx2(2t)'''</math>
+
<math>ax1(2t) and bx2(2t) \to SUM \to ax1(2t)+bx2(2t)</math>
  
  
Line 20: Line 20:
 
<math>x2(t) \to Scalar multiplication(*b) \to bx2(t)</math>
 
<math>x2(t) \to Scalar multiplication(*b) \to bx2(t)</math>
  
<math>ax1(t) and bx2(t) \to SUM \to \to System \to'''ax1(2t)+bx2(2t)'''</math>
+
<math>ax1(t) and bx2(t) \to SUM \to \to System \to ax1(2t)+bx2(2t)</math>
  
 
Those two yielded the same outputs thus it is linear.
 
Those two yielded the same outputs thus it is linear.
 
  
 
== Example of non-linearity and its proof ==
 
== Example of non-linearity and its proof ==

Revision as of 16:48, 12 September 2008

LINEARITY

Linearity, in my definition, means that superposition always works. In other words, summation of inputs yield summation of outputs.

Example of Linearity and its proof

$ \,y(t)=x(2t)\, $


Proof:

$ x1(t) \to System \to y1(t)=x1(2t) \to Scalar multiplication(*a) \to ax1(2t) $

$ x2(t) \to System \to y2(t)=x2(2t) \to Scalar multiplication(*b) \to bx2(2t) $

$ ax1(2t) and bx2(2t) \to SUM \to ax1(2t)+bx2(2t) $


$ x1(t) \to Scalar multiplication(*a) \to ax1(t) $

$ x2(t) \to Scalar multiplication(*b) \to bx2(t) $

$ ax1(t) and bx2(t) \to SUM \to \to System \to ax1(2t)+bx2(2t) $

Those two yielded the same outputs thus it is linear.

Example of non-linearity and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch