(New page: A system is time invariant if for any time shifted input signal the system produces a shifted output such that if an input <math>x(t)</math> produced an output <math>y(t)</math> then the i...)
 
Line 1: Line 1:
 
A system is time invariant if for any time shifted input signal the system produces a shifted output such that if an input <math>x(t)</math> produced an output <math>y(t)</math> then the input <math>x(t + t_0)</math> would produced the output <math>y(t + t_0)</math>
 
A system is time invariant if for any time shifted input signal the system produces a shifted output such that if an input <math>x(t)</math> produced an output <math>y(t)</math> then the input <math>x(t + t_0)</math> would produced the output <math>y(t + t_0)</math>
 +
 +
 +
'''Time invariant Signal'''
 +
--

Revision as of 16:02, 12 September 2008

A system is time invariant if for any time shifted input signal the system produces a shifted output such that if an input $ x(t) $ produced an output $ y(t) $ then the input $ x(t + t_0) $ would produced the output $ y(t + t_0) $


Time invariant Signal --

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett