(Example of Time invariant system and its proof)
(Example of Time invariant system and its proof)
Line 11: Line 11:
  
 
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 
<math>                                                            =e^{x(t-t0)}</math>
 
<math>                                                            =e^{x(t-t0)}</math>

Revision as of 16:14, 12 September 2008

TIME INVARIANCE

Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."


Example of Time invariant system and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ =e^{x(t-t0)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett