Line 7: Line 7:
 
Example for a linear system is
 
Example for a linear system is
  
<math>x_1</math> = 8<math>e^t</math>                       <math>x_2</math>=8<math>t^2</math>
+
<math>x_1</math> = 8<math>e^t</math>        
 +
 
 +
<math>x_2</math>=8<math>t^2</math>
 +
 
 +
Let ,
 +
 
 +
<math>x_3</math> = 8<math>e^t</math> + 8<math>t^2</math>

Revision as of 14:21, 12 September 2008

A system is said to be linear if it follows the following conditions

1) The response to $ x_1(t) $ + $ x_2(t) $ is $ y_1(t) $ +$ y_2(t) $.

2) The response to $ ax_1(t) $ is $ ay_1(t) $, where a is any complex constant.

Example for a linear system is

$ x_1 $ = 8$ e^t $

$ x_2 $=8$ t^2 $

Let ,

$ x_3 $ = 8$ e^t $ + 8$ t^2 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal