(Example of a Linear System)
(Example of Non-Linear System)
Line 12: Line 12:
  
 
==Example of Non-Linear System==
 
==Example of Non-Linear System==
 +
GIVEN
 +
x1(t) = t
 +
x2(t) = t^2
 +
y(t) = sin(x)
 +
y1(t) = sin(t)
 +
y2(t) = sin(t^2)
 +
ay1 + by2 = a*sin(t) + b*sin(t^2) != Sin(ax1+bx2)
 +
So Non-Linear.

Revision as of 16:03, 12 September 2008

Linear Systems

According to what I have understood, If a system input x(t) produces and output y(t), then it follows that if the system input is x(t+d) then output will be y(t+d). Also another idea is, If x1(t) --> y1(t) and x2(t) --> y2(t), then it follows that the input to the same system a1.x1(t)+a2.x2(t) gives output a1y1(t)+ a2y2(t)

Example of a Linear System

Given the system y(t) = 2x(t)

Input x1(t) = 4n and x2(t) = 10, we get y1(t) = 8n and y2(t) = 20. y1(t) + y2(t) = 8n+20

Input sum of the two inputs x(t) = 4n + 10, we get output y3(t) = 8n+20.

So--> y1(t) + y2(t) = y3(t) the system is LINEAR.

Example of Non-Linear System

GIVEN x1(t) = t x2(t) = t^2 y(t) = sin(x) y1(t) = sin(t) y2(t) = sin(t^2) ay1 + by2 = a*sin(t) + b*sin(t^2) != Sin(ax1+bx2) So Non-Linear.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang