Line 22: Line 22:
 
  '''y[n]=cos[nQ]*x[n]'''
 
  '''y[n]=cos[nQ]*x[n]'''
  
*y[x[n-n0]]=cos[nQ]*x[n-n0]
+
*<math>y[x[n-n0]]=cos[nQ]*x[n-n0]</math>
 
Also,
 
Also,
*y[n-n0]= cos[n-n0]* x[n-n0]
+
*<math>y[n-n0]= cos[n-n0]Q* x[n-n0]</math>
  
 
Thus from above we can say that the system is '''time variant'''
 
Thus from above we can say that the system is '''time variant'''

Latest revision as of 10:11, 12 September 2008

Time invariance

A system is called time invariant if the cascade

  • x[n]----->Time delay ----> System -----> z[n]

yields the same output as

  • x[n]----->system----->Time Delay-----> y[n]


Time Invariance check

Let us check for y[n] = x[n]^2
  • $ y[x[n-n0]] = x{[n-n0]^2} $

Also,

  • $ y[n-n0] = x{[n-n0]^2} $

Thus the above system is time invariant


Time Variance check

Let us test for

y[n]=cos[nQ]*x[n]
  • $ y[x[n-n0]]=cos[nQ]*x[n-n0] $

Also,

  • $ y[n-n0]= cos[n-n0]Q* x[n-n0] $

Thus from above we can say that the system is time variant

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett