Line 9: Line 9:
  
 
== Time Invariance check ==
 
== Time Invariance check ==
  Let us check for y[n] = x[n]^2
+
  Let us check for '''y[n] = x[n]^2'''
  
 
*<math>y[x[n-n0]] = x{[n-n0]^2}</math>  
 
*<math>y[x[n-n0]] = x{[n-n0]^2}</math>  
 
Also,
 
Also,
 
*<math>y[n-n0] = x{[n-n0]^2}</math>
 
*<math>y[n-n0] = x{[n-n0]^2}</math>
Thus the above system is time invariant
+
Thus the above system is '''time invariant'''
  
  
Line 21: Line 21:
 
Let us test for  
 
Let us test for  
 
  '''y[n]=cos[nQ]*x[n]'''
 
  '''y[n]=cos[nQ]*x[n]'''
 +
 +
*y[x[n-n0]]=cos[nQ]*x[n-n0]
 +
Also,
 +
*y[n-n0]= cos[n-n0]* x[n-n0]
 +
 +
Thus from above we can say that the system is '''time variant'''

Revision as of 10:09, 12 September 2008

Time invariance

A system is called time invariant if the cascade

x[n]----->Time delay ----> System -----> z[n] yields the same output as x[n]----->system----->Time Delay-----> y[n]


Time Invariance check

Let us check for y[n] = x[n]^2
  • $ y[x[n-n0]] = x{[n-n0]^2} $

Also,

  • $ y[n-n0] = x{[n-n0]^2} $

Thus the above system is time invariant


Time Variance check

Let us test for

y[n]=cos[nQ]*x[n]
  • y[x[n-n0]]=cos[nQ]*x[n-n0]

Also,

  • y[n-n0]= cos[n-n0]* x[n-n0]

Thus from above we can say that the system is time variant

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood