(Linearity and Time Invariance)
(Linearity and Time Invariance)
Line 10: Line 10:
 
X3[n]=δ[n-3]   ->  Y3[n]=16 δ[n-4]
 
X3[n]=δ[n-3]   ->  Y3[n]=16 δ[n-4]
  
...   -> ...
+
...   ->   ...
  
 
Xk[n]=δ[n-k]   ->  Yk[n]=(k+1)2 δ[n-(k+1)]   ->  For any non-negative integer k
 
Xk[n]=δ[n-k]   ->  Yk[n]=(k+1)2 δ[n-(k+1)]   ->  For any non-negative integer k

Revision as of 09:47, 12 September 2008

Linearity and Time Invariance

Given system: Input Output X0[n]=δ[n] -> Y0[n]=δ[n-1]

X1[n]=δ[n-1] -> Y1[n]=4δ[n-2]

X2[n]=δ[n-2] -> Y2[n]=9 δ[n-3]

X3[n]=δ[n-3] -> Y3[n]=16 δ[n-4]

... -> ...

Xk[n]=δ[n-k] -> Yk[n]=(k+1)2 δ[n-(k+1)] -> For any non-negative integer k

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal