(NON-LINEAR SYSTEM)
(LINEAR SYSTEM)
Line 17: Line 17:
 
== LINEAR SYSTEM ==
 
== LINEAR SYSTEM ==
  
 +
'''<math>X(t) \to Y(2t)</math>'''
 +
 +
 +
'''PROOF'''
 +
 +
 +
let '''<math>a \in \mathbb{{C}}</math>''' and '''<math>b \in \mathbb{{C}}</math>''',
 +
 +
 +
'''<math>X_1(t) \Rightarrow Y_1(t) = X_1(2t), a*X_1(2t) \downarrow</math>'''
 +
 +
........................................................................'''<math>\bigoplus \to Z(t) =  a*X_1(2t) + b*X_2(2t)</math>'''
 +
 +
'''<math>X_2(t) \Rightarrow Y_2(t) = X_2(2t), b*X_2(2t) \uparrow</math>'''
 +
 +
 +
----
 +
 +
'''<math>a*X_1(t) \downarrow</math>'''
 +
 +
..................'''<math>\bigoplus \to a*X_1(t) + b*X_2(t) \Rightarrow W(t) = a*X_1(2t) + b*X_2(2t)</math>
 +
 +
'''<math>a*X_2(t) \uparrow</math>'''
 +
 +
 +
 +
'''<math>Z(t) = W(t) \Rightarrow</math>''' Non-Linear System
  
 
== NON-LINEAR SYSTEM ==
 
== NON-LINEAR SYSTEM ==

Revision as of 15:09, 12 September 2008

LINEARITY

For a system to be called Linear the following two scenarios must yield output signals that are equal to each other.


1) Signals $ X_1 $ and $ Y_1 $ are first multiplied by constants $ C_1 \in \mathbb{C} $ and $ C_2\in \mathbb{C} $ respectively, then added together and passed through a system that yields a signal $ Z(t) $.

and

2) Signals $ X_1 $ and $ Y_1 $ each pass through a system, their results are multiplied by constants $ C_1 \in \mathbb{C} $ and $ C_2\in \mathbb{C} $ respectively, and then added together yielding a signal $ W(t) $.

For this system to be linear, signals $ Z(t) $ and $ W(t) $ must be equal to each other.

$ Z(t) = W(t) $

LINEAR SYSTEM

$ X(t) \to Y(2t) $


PROOF


let $ a \in \mathbb{{C}} $ and $ b \in \mathbb{{C}} $,


$ X_1(t) \Rightarrow Y_1(t) = X_1(2t), a*X_1(2t) \downarrow $

........................................................................$ \bigoplus \to Z(t) = a*X_1(2t) + b*X_2(2t) $

$ X_2(t) \Rightarrow Y_2(t) = X_2(2t), b*X_2(2t) \uparrow $



$ a*X_1(t) \downarrow $

..................$ \bigoplus \to a*X_1(t) + b*X_2(t) \Rightarrow W(t) = a*X_1(2t) + b*X_2(2t) $

$ a*X_2(t) \uparrow $


$ Z(t) = W(t) \Rightarrow $ Non-Linear System

NON-LINEAR SYSTEM

$ X(t) \to Y(t)^3 $


PROOF


let $ a \in \mathbb{{C}} $ and $ b \in \mathbb{{C}} $,


$ X_1(t) \Rightarrow Y_1(t) = X_1(t)^3, a*X_1(t)^3 \downarrow $

........................................................................$ \bigoplus \to Z(t) = a*X_1(t)^3 + b*X_2(t)^3 $

$ X_2(t) \Rightarrow Y_2(t) = X_2(t)^3, b*X_2(t)^3 \uparrow $



$ a*X_1(t) \downarrow $

..................$ \bigoplus \to a*X_1(t) + b*X_2(t) \Rightarrow W(t)^3 = (a*X_1(t) + b*X_2(t))^3 $

$ a*X_2(t) \uparrow $


$ Z(t) \ne W(t) \Rightarrow $ Non-Linear System

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman