Line 1: Line 1:
 
== OUTPUT Graphs ==
 
== OUTPUT Graphs ==
 +
[[Image:CTSignalGraph_ECE301Fall2008mboutin.jpg]]
 +
 +
[[Image:DTSignalPeriodic_ECE301Fall2008mboutin.jpg]]
 +
 +
[[Image:DTSignalNonPeriodic_ECE301Fall2008mboutin]]
 +
 +
[[Image:CTSignalNonPeriodic_ECE301Fall2008mboutin.jpg]]
 +
 +
[[Image:CT2DTSignalPeriodic_ECE301Fall2008mboutin.jpg]]
  
 
== MATLAB CODE ==
 
== MATLAB CODE ==

Revision as of 08:18, 12 September 2008

OUTPUT Graphs

CTSignalGraph ECE301Fall2008mboutin.jpg

DTSignalPeriodic ECE301Fall2008mboutin.jpg

File:DTSignalNonPeriodic ECE301Fall2008mboutin

CTSignalNonPeriodic ECE301Fall2008mboutin.jpg

CT2DTSignalPeriodic ECE301Fall2008mboutin.jpg

MATLAB CODE

F0 = 17/(2*pi);
T0 = 1/F0;
Ts = .0001;

t = [0:Ts:2*T0]; %time for 2 cycles of wave

x = real(5*exp(j*F0*2*pi*t));

figure(1)
plot(t,x)
title('CT Signal');

% change sampleing rate to be periodic DT signal
t = [0:.01:2*T0];
x = real(5*exp(j*F0*2*pi*t));

figure(2)
plot(t,x, '.');
title('sample rate of .01');

figure(3)
t = [0:.013:2*T0];
x = real(5*exp(j*F0*2*pi*t));
plot(t,x, '.');
title('sample rate of .013');

% non periodic function turned periodic.

t = [0:.01:1];
x = exp(t);

% non periodic 
figure(4)
plot(t,x)

t1 = [0:.1:1];
t2 = [1:.1:2];
t3=[2:.1:3];
t4 =[t1 t2 t3];
x = [exp(t1) exp(t1) exp(t1)];

% repeated non periodic to be periodic
figure(5)
plot(t4,x,'.');

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett