Line 9: Line 9:
  
 
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
                          =  a*cos(t)+b*sin(t) = z(t)
+
                            =  a*cos(t)+b*sin(t) = z(t)
 
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
 
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
  
Line 16: Line 16:
  
 
cos(t) = x1(t)*a +++
 
cos(t) = x1(t)*a +++
            =  a*cos(t)+b*sin(t) -> [sys] -> w(t)
+
            =  a*cos(t)+b*sin(t) -> [sys] -> w(t)
 
sin(t) = x2(t)*b +++
 
sin(t) = x2(t)*b +++
  

Revision as of 11:11, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way

x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++

                            =   a*cos(t)+b*sin(t) = z(t)

x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++


Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++

Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch