(New page: == Linearity == So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b...)
 
Line 1: Line 1:
 
 
== Linearity ==
 
== Linearity ==
  
Line 17: Line 16:
  
 
x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a  +++
 
x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a  +++
                                                = a*2*x1[n]^3+2*b*x2[n]^3
+
                                  = a*2*x1[n]^3+2*b*x2[n]^3
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++

Revision as of 07:07, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

Example: Non-Linear

y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood