(Example of Linear System)
(Problem 4)
Line 4: Line 4:
 
:<math>x_2(t) </math>
 
:<math>x_2(t) </math>
 
with respective outputs:
 
with respective outputs:
:<math>y_1(t) = H [ x_1(t) ] </math>
+
:<math>y_1(t) = H*[ x_1(t) ] </math>
:<math>y_2(t) = H [ x_2(t) ] </math>
+
:<math>y_2(t) = H*[ x_2(t) ] </math>
 
will satisfy the equation
 
will satisfy the equation
:<math>\alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t)  ]</math>
+
:<math>\alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t)  ]</math>
 
for any  <math>\alpha </math> and <math>\beta </math>.
 
for any  <math>\alpha </math> and <math>\beta </math>.
  

Revision as of 06:38, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H*[ x_1(t) ] $
$ y_2(t) = H*[ x_2(t) ] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Linear System

$ x_1(t) = 4t $
$ x_2(t) = 3t $
$ H = 87 $

therefore

$ y_1(t) = H*[ x_1(t) ] = 87*[4t] $
$ y_2(t) = H*[ x_2(t) ] = 87*[3t] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Non-Linear System

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010