(→Problem 4) |
(→Problem 4) |
||
Line 9: | Line 9: | ||
:<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math> | :<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math> | ||
for any <math>\alpha </math> and <math>\beta </math>. | for any <math>\alpha </math> and <math>\beta </math>. | ||
+ | |||
+ | ==Example of Linear System== | ||
+ | |||
+ | |||
+ | ==Example of Non-Linear System== |
Revision as of 06:26, 12 September 2008
Problem 4
A linear is system is a system that given two valid inputs:
- $ x_1(t) $
- $ x_2(t) $
with respective outputs:
- $ y_1(t) = H { x_1(t) } $
- $ y_2(t) = H { x_2(t) } $
will satisfy the equation
- $ \alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } $
for any $ \alpha $ and $ \beta $.