(Problem 4)
(Problem 4)
Line 9: Line 9:
 
:<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math>
 
:<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math>
 
for any  <math>\alpha </math> and <math>\beta </math>.
 
for any  <math>\alpha </math> and <math>\beta </math>.
 +
 +
==Example  of Linear System==
 +
 +
 +
==Example of Non-Linear System==

Revision as of 06:26, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H { x_1(t) } $
$ y_2(t) = H { x_2(t) } $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } $

for any $ \alpha $ and $ \beta $.

Example of Linear System

Example of Non-Linear System

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett