(Part B)
(Part B: Find input given output)
Line 32: Line 32:
  
 
== Part B: Find input given output ==
 
== Part B: Find input given output ==
LAWL
+
 
 +
The given output is:
 +
 
 +
<math>\,Y[n]=u[n-1]\,</math>
 +
 
 +
 
 +
This can be re-written as:
 +
 
 +
<math>\,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\,</math>
 +
 
 +
 
 +
Because the system is assumed to be linear, we can write the input as

Revision as of 20:02, 11 September 2008

Part A: Can the system be time invariant?

The system cannot be time invariant.


For instance, the input

$ \,X_0[n]=\delta [n]\, $

yields the output

$ \,Y_0[n]=\delta [n-1]\, $

Thus,

$ \,Y_0[n-1]=\delta [n-2]\, $


However, the input

$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $

yields the output

$ \,Y_1[n]=4\delta[n-2]\, $


Since these two are not equal

$ \,\delta [n-2]\not= 4\delta[n-2]\, $

the system is time variant (by not fitting the definition of time invariance).

Part B: Find input given output

The given output is:

$ \,Y[n]=u[n-1]\, $


This can be re-written as:

$ \,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\, $

$ \,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\, $

$ \,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\, $


Because the system is assumed to be linear, we can write the input as

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett