(New page: == Part A == BLECK == Part B == LAWL)
 
(Part A)
Line 1: Line 1:
== Part A ==
+
== Part A: Can the system be time invariant? ==
BLECK
+
The system cannot be time invariant.
 +
 
 +
 
 +
For instance, the input
 +
 
 +
<math>\,X_0[n]=\delta [n]\,</math>
 +
 
 +
yields the output
 +
 
 +
<math>\,Y_0[n]=\delta [n-1]\,</math>
 +
 
 +
Thus,
 +
 
 +
<math>\,Y_0[n-1]=\delta [n-2]\,</math>
 +
 
 +
 
 +
However, the input
 +
 
 +
<math>\,X_0[n-1]=\delta [n-1]=X_1[n]\,</math>
 +
 
 +
yields the output
 +
 
 +
<math>\,Y_1[n]=4\delta[n-2]\,</math>
 +
 
 +
 
 +
Since these two are not equal
 +
 
 +
<math>\,\delta [n-2]\not= 4\delta[n-2]\,</math>
 +
 
 +
the system is time variant (by not fitting the definition of time invariance).
  
 
== Part B ==
 
== Part B ==
 
LAWL
 
LAWL

Revision as of 19:28, 11 September 2008

Part A: Can the system be time invariant?

The system cannot be time invariant.


For instance, the input

$ \,X_0[n]=\delta [n]\, $

yields the output

$ \,Y_0[n]=\delta [n-1]\, $

Thus,

$ \,Y_0[n-1]=\delta [n-2]\, $


However, the input

$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $

yields the output

$ \,Y_1[n]=4\delta[n-2]\, $


Since these two are not equal

$ \,\delta [n-2]\not= 4\delta[n-2]\, $

the system is time variant (by not fitting the definition of time invariance).

Part B

LAWL

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett