Line 1: | Line 1: | ||
I choose y(t)=cos(t) as my continous signal. | I choose y(t)=cos(t) as my continous signal. | ||
There is no doubt that y(t)=cos(t) is periodic because cos(t + T) = cos(t) where its fundamental period is 2*π | There is no doubt that y(t)=cos(t) is periodic because cos(t + T) = cos(t) where its fundamental period is 2*π | ||
− | |||
+ | ---- | ||
+ | == Periodic Function == | ||
+ | |||
+ | |||
+ | First I sample the signal y(t)=cos(t) at 100 Hz and so we get the following discrete signal which is periodic | ||
− | |||
[[Image:periodic_goklani_ECE301Fall2008mboutin.jpg]] | [[Image:periodic_goklani_ECE301Fall2008mboutin.jpg]] | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | == Non periodic funtion == | ||
+ | |||
+ | |||
+ | |||
+ | * Now if I sample the signal y(t)=cos(t) at 22.22 Hz then we get the following discrete signal which is not periodic | ||
+ | |||
+ | |||
+ | |||
+ | [[Image:non periodic_goklani_ECE301Fall2008mboutin.jpg]] | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | == Recurring non periodic function = periodic == | ||
+ | |||
+ | Now let us shift the non periodic function y(t)= <math>{e^{3t}}</math> | ||
+ | |||
+ | |||
+ | we use the following matlab code | ||
+ | %referred the code of paul sceffler | ||
+ | <pre> | ||
+ | clc | ||
+ | clear | ||
+ | |||
+ | t=0.01:.01:1; | ||
+ | x=exp(3*t); | ||
+ | i=[]; | ||
+ | for d=1:10 | ||
+ | i=[i,x]; | ||
+ | end | ||
+ | |||
+ | t=[0.01:.01:10]; | ||
+ | plot(t,i) | ||
+ | </pre> | ||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | [[Image:recurring non periodic_goklani_ECE301Fall2008mboutin.jpg]] | ||
+ | |||
+ | we see above that the non-periodic signal is now periodic |
Revision as of 20:41, 11 September 2008
I choose y(t)=cos(t) as my continous signal. There is no doubt that y(t)=cos(t) is periodic because cos(t + T) = cos(t) where its fundamental period is 2*π
Periodic Function
First I sample the signal y(t)=cos(t) at 100 Hz and so we get the following discrete signal which is periodic
Non periodic funtion
- Now if I sample the signal y(t)=cos(t) at 22.22 Hz then we get the following discrete signal which is not periodic
Recurring non periodic function = periodic
Now let us shift the non periodic function y(t)= $ {e^{3t}} $
we use the following matlab code
%referred the code of paul sceffler
clc clear t=0.01:.01:1; x=exp(3*t); i=[]; for d=1:10 i=[i,x]; end t=[0.01:.01:10]; plot(t,i)
we see above that the non-periodic signal is now periodic