(New page: == Def of Time invariant system == when parameter is an invariable, parameter does not change a value depends on time changing. == example of time invariant == <math>y(t)=3x(t)</math>...)
 
Line 12: Line 12:
 
<math>z(t)=3y(t)</math>
 
<math>z(t)=3y(t)</math>
  
<math>=3x(t-t_0)</math>
+
<math>=3x(t-t_0)\leftarrow same output</math>
  
 
<math>y(t)=3x(t)</math>
 
<math>y(t)=3x(t)</math>
Line 18: Line 18:
 
<math>z(t)=y(t-t_0)</math>
 
<math>z(t)=y(t-t_0)</math>
  
<math>=3x(t-t_0)</math>
+
<math>=3x(t-t_0)\leftarrow same output</math>
  
 
it has  a same output.  therefore it is a time invariant.
 
it has  a same output.  therefore it is a time invariant.

Revision as of 17:24, 11 September 2008

Def of Time invariant system

when parameter is an invariable, parameter does not change a value depends on time changing.


example of time invariant

$ y(t)=3x(t) $

$ y(t)=x(t-t_0) $

$ z(t)=3y(t) $

$ =3x(t-t_0)\leftarrow same output $

$ y(t)=3x(t) $

$ z(t)=y(t-t_0) $

$ =3x(t-t_0)\leftarrow same output $

it has a same output. therefore it is a time invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett