(New page: Blah == Example of a Liner System == Blah == Example of a Non-Linear System == Blah)
 
Line 1: Line 1:
Blah
+
== Definition of Linearity ==
 +
A system is linear if for any inputs <math>\,x_1(t), x_2(t)\,</math> yielding outputs <math>\,y_1(t), y_2(t)\,</math>, respectively, the response to
  
== Example of a Liner System ==
+
<math>\,ax_1(t)+bx_2(t)\,</math> is
 +
 
 +
<math>\,ay_1(t)+by_2(t)\,</math>, where <math>\,a,b\in \mathbb{C}, a\not= 0 ,b\not= 0\,</math>.
 +
 
 +
== Example of a Linear System ==
 
Blah
 
Blah
  
 
== Example of a Non-Linear System ==
 
== Example of a Non-Linear System ==
 
Blah
 
Blah

Revision as of 17:24, 11 September 2008

Definition of Linearity

A system is linear if for any inputs $ \,x_1(t), x_2(t)\, $ yielding outputs $ \,y_1(t), y_2(t)\, $, respectively, the response to

$ \,ax_1(t)+bx_2(t)\, $ is

$ \,ay_1(t)+by_2(t)\, $, where $ \,a,b\in \mathbb{C}, a\not= 0 ,b\not= 0\, $.

Example of a Linear System

Blah

Example of a Non-Linear System

Blah

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison