Line 5: Line 5:
 
Let us apply a time-delay of <math>n_0</math> to the system.  
 
Let us apply a time-delay of <math>n_0</math> to the system.  
  
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] </math>
+
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 -n_0)]  </math>

Revision as of 15:40, 11 September 2008

6 a) The system cannot be time-invariant.

$ X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)] $

Let us apply a time-delay of $ n_0 $ to the system.

$ \delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 -n_0)] $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett