(New page: == Time Invariance == A system is time invariant if for a certain x(t) that produces an output y(t) if you shift the input to x(t-T) it just yields the same output shifted by the same T. ...)
 
(Time Invariant System)
Line 16: Line 16:
  
 
As you can see these two outputs are the same, so the system is time invariant.
 
As you can see these two outputs are the same, so the system is time invariant.
 +
 +
==Time Variant System==
 +
 +
I propose that a system where
 +
 +
<math> x(t) </math> -> [SYSTEM] -> <math>x(35t)</math>
 +
 +
Is time variant.  Let's use the same T and x(t) for this example.
 +
 +
<math>x(t-T) = 2e^{t-5} </math> -> [SYSTEM] -> <math>2*e^{35t-5}</math>
 +
 +
<math>x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=2*e^{35(t-5)} = 2*e^{35t - 175}</math>
 +
 +
Clearly these two results are not the same, so the system is time variant.

Revision as of 14:48, 11 September 2008

Time Invariance

A system is time invariant if for a certain x(t) that produces an output y(t) if you shift the input to x(t-T) it just yields the same output shifted by the same T. y(t-T).

Time Invariant System

I propose that a system where

$ x(t) $ -> [SYSTEM] -> $ y(t) = 35x(t) $ is time invariant. Let's check.

Let $ x(t)=2e^t $ and $ T=5 $

$ x(t-T) = 2e^{t-5} $ -> [SYSTEM] -> $ 35*2*e^{t-5} $

$ x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=35*2*e^{t-5} $

As you can see these two outputs are the same, so the system is time invariant.

Time Variant System

I propose that a system where

$ x(t) $ -> [SYSTEM] -> $ x(35t) $

Is time variant. Let's use the same T and x(t) for this example.

$ x(t-T) = 2e^{t-5} $ -> [SYSTEM] -> $ 2*e^{35t-5} $

$ x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=2*e^{35(t-5)} = 2*e^{35t - 175} $

Clearly these two results are not the same, so the system is time variant.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang