Line 14: Line 14:
 
Now shifted again
 
Now shifted again
  
<math>y_2=y(t-k)=x2x(t-k)cos(t-k)+1=y_1(t)</math>
+
<math>y_2=y(t-k)=x_2(t-k)cos(t-k)+1=y_1(t)</math>
  
  
 
=== Example of Time Variant function ===
 
=== Example of Time Variant function ===

Revision as of 14:34, 11 September 2008

Time Invariance

Background

A time invariant system refers to a system where the time has no affect on the amplitude of the function. To put it another way, time is never multiplied or taken to any power, affecting the amplitude

Example of Time Invariant function

$ y(t)=2x(t)cos(t)+1 $ because replace t with $ x_1=x(t-k) $ ,

$ y_1(t-k)=2x_1cos(t)+1=2x(t-k)cos(t-k)+1 $

Now shifted again

$ y_2=y(t-k)=x_2(t-k)cos(t-k)+1=y_1(t) $


Example of Time Variant function

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett