Line 17: Line 17:
 
 
 
         Since, (1) & (2) are not equal to each other, A & C are not
 
         Since, (1) & (2) are not equal to each other, A & C are not
 +
  
  
Line 29: Line 30:
 
          
 
          
 
         Again, since (3) & (4) are not equal to each other, A & C are not
 
         Again, since (3) & (4) are not equal to each other, A & C are not
 +
  
  

Revision as of 14:39, 16 September 2008



       A		B		


       P(A=1) = p	P(B=1) = p
       P(A=0) = 1-p	P(B=0) = 1-p			


       P(A=1,C=1) = P(A=1) . P(C=1) = p.{P(A=1,B=0)+P(A=0,B=1)} = 2.p^2.(1-p)		(1)
       P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)		                 		(2)


       Since, (1) & (2) are not equal to each other, A & C are not


independent of each other when bits are biased.

                            "OR"        
       P(A=0,C=0) = P(A=0) . P(C=0) = (1-p).{P(A=1,B=1)+P(A=0,B=0)} = (p^2 + (1-p)^2).(1-p)	(3)
       P(A=0,B=0) = P(A=1) . P(B=0) = (1-p).(1-p)		                 		(4)


       Again, since (3) & (4) are not equal to each other, A & C are not


independent of each other when bits are biased.

       Hence, it is proved.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett