Line 10: Line 10:
 
== Question 6a ==
 
== Question 6a ==
  
 +
<math>x[n] \rightarrow \mbox{Time Delay} \rightarrow y[n]=x[n-n_0] \rightarrow System \rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)]</math>
 +
 +
<math>x[n] \rightarrow System \rightarrow Y_k[n]=(k+1)^2 \delta [n-(k+1)] \rightarrow \mbox{Time Delay}\rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)]</math>
 +
 +
So the system is time invariant.
  
 
== Question 6b ==
 
== Question 6b ==

Revision as of 14:27, 11 September 2008

System

Input: $ X_k[n]=\delta [n-k] $

Output: $ Y_k[n]=(k+1)^2 \delta [n-(k+1)] $

For any non-negative integer k


Question 6a

$ x[n] \rightarrow \mbox{Time Delay} \rightarrow y[n]=x[n-n_0] \rightarrow System \rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)] $

$ x[n] \rightarrow System \rightarrow Y_k[n]=(k+1)^2 \delta [n-(k+1)] \rightarrow \mbox{Time Delay}\rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)] $

So the system is time invariant.

Question 6b

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn