(→Example of a Time Invariant System) |
|||
Line 13: | Line 13: | ||
== Example of a Time Invariant System == | == Example of a Time Invariant System == | ||
− | Let <math>y(t)=2x(t) | + | Let <math>y(t)=2x(t)\!</math>. The system is time invarient if for input <math>x(t-t_0)\!</math> the response is <math>2x(t-t_0)\!</math>. |
<br> | <br> | ||
<br> | <br> |
Revision as of 14:53, 11 September 2008
Time Invariance
A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.
One can show a system is time invarient by proving
where $ y_1(t)\! $ and $ y_2(t)\! $ are equal.
Example of a Time Invariant System
Let $ y(t)=2x(t)\! $. The system is time invarient if for input $ x(t-t_0)\! $ the response is $ 2x(t-t_0)\! $.
Proof: