(→Time Invariance) |
(→Time Invariance) |
||
Line 4: | Line 4: | ||
<br> | <br> | ||
− | [[Image: | + | [[Image:Timeinvx_ECE301Fall2008mboutin.JPG]] |
== Example of a Time Invariant System == | == Example of a Time Invariant System == |
Revision as of 12:16, 11 September 2008
Time Invariance
A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.
Example of a Time Invariant System
Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ y(t)=2x(t-t_0)+2\! $ the response is $ y(t)=2x(t)+2\! $.