(→Time Invariance) |
(→Time Invariance) |
||
Line 1: | Line 1: | ||
== Time Invariance == | == Time Invariance == | ||
− | A system is time-invariant if | + | A system is time-invariant if for any input <math>x(t)\!</math> and any <math>t_0\!</math> (where <math>t_0\!</math> is a real number) the response to the shifted input <math>x(t-t_0)\!</math> is <math>y(t-t_0)\!</math>. |
− | + | ||
− | + | ||
== Example of a Time Invariant System == | == Example of a Time Invariant System == |
Revision as of 12:15, 11 September 2008
Time Invariance
A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.
Example of a Time Invariant System
Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ y(t)=2x(t-t_0)+2\! $ the response is $ y(t)=2x(t)+2\! $.