(Time Invariance)
Line 1: Line 1:
 
== Time Invariance ==
 
== Time Invariance ==
A system is time-invariant if for any system with input <math>x(t)\!</math> and output <math>y(t)\!</math> then the response from an input <math>x(t-t_0)\!</math> will be <math>y(t-t_0)\!</math>.
+
A system is time-invariant if the input <math>x(t)\!</math> and output <math>y(t)\!</math> then the response from an input <math>x(t-t_0)\!</math> will be <math>y(t-t_0)\!</math>.
  
 
[[Image:Timeinv_ECE301Fall2008mboutin.JPG]]
 
[[Image:Timeinv_ECE301Fall2008mboutin.JPG]]
 
  
 
== Example of a Time Invariant System ==
 
== Example of a Time Invariant System ==

Revision as of 12:09, 11 September 2008

Time Invariance

A system is time-invariant if the input $ x(t)\! $ and output $ y(t)\! $ then the response from an input $ x(t-t_0)\! $ will be $ y(t-t_0)\! $.

Timeinv ECE301Fall2008mboutin.JPG

Example of a Time Invariant System

Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ y(t)=2x(t-t_0)+2\! $ the response is $ y(t)=2x(t)+2\! $.



Example of a System that is not Time Invariant

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett