(→Examples) |
|||
Line 4: | Line 4: | ||
==Examples== | ==Examples== | ||
+ | |||
+ | Time-Invariant System | ||
+ | |||
+ | <pre> | ||
+ | y = 2x(t) | ||
+ | |||
+ | x1(t) -> x1(t-t0) -System-> 2x1(t-t0) | ||
+ | |||
+ | x2(t) -System-> 2x2(t) -> 2x2(t-t0) | ||
+ | |||
+ | Therefore, this system is Time Invariant | ||
+ | </pre> | ||
+ | |||
+ | |||
+ | Time-Variant System | ||
+ | |||
+ | <pre> | ||
+ | y = x(2t) | ||
+ | |||
+ | x1(t) -> x1(t-t0) -System-> x1(2t-t0) | ||
+ | |||
+ | x2(t) -System-> x2(2t) -> x2(2(t-t0)) | ||
+ | |||
+ | Therefore, this system is Time Variant because the outputs do not match. | ||
+ | </pre> |
Latest revision as of 11:28, 11 September 2008
A system is Time Invariant if:
Examples
Time-Invariant System
y = 2x(t) x1(t) -> x1(t-t0) -System-> 2x1(t-t0) x2(t) -System-> 2x2(t) -> 2x2(t-t0) Therefore, this system is Time Invariant
Time-Variant System
y = x(2t) x1(t) -> x1(t-t0) -System-> x1(2t-t0) x2(t) -System-> x2(2t) -> x2(2(t-t0)) Therefore, this system is Time Variant because the outputs do not match.