(Examples)
 
Line 4: Line 4:
  
 
==Examples==
 
==Examples==
 +
 +
Time-Invariant System
 +
 +
<pre>
 +
y = 2x(t)
 +
 +
x1(t) -> x1(t-t0) -System-> 2x1(t-t0)
 +
 +
x2(t) -System-> 2x2(t) ->  2x2(t-t0)
 +
 +
Therefore, this system is Time Invariant
 +
</pre>
 +
 +
 +
Time-Variant System
 +
 +
<pre>
 +
y = x(2t)
 +
 +
x1(t) -> x1(t-t0) -System->  x1(2t-t0)
 +
 +
x2(t) -System-> x2(2t) ->    x2(2(t-t0))
 +
 +
Therefore, this system is Time Variant because the outputs do not match.
 +
</pre>

Latest revision as of 11:28, 11 September 2008

A system is Time Invariant if:

TIimg ECE301Fall2008mboutin.png

Examples

Time-Invariant System

y = 2x(t)

x1(t) -> x1(t-t0) -System-> 2x1(t-t0)

x2(t) -System-> 2x2(t) ->   2x2(t-t0)

Therefore, this system is Time Invariant


Time-Variant System

y = x(2t)

x1(t) -> x1(t-t0) -System->  x1(2t-t0)

x2(t) -System-> x2(2t) ->    x2(2(t-t0))

Therefore, this system is Time Variant because the outputs do not match.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang