(Non-Linear System)
(Linear System)
Line 13: Line 13:
 
x[n] <math>\rightarrow</math> system <math>\rightarrow</math> y[n] = 2x[n]
 
x[n] <math>\rightarrow</math> system <math>\rightarrow</math> y[n] = 2x[n]
  
Proof:  
+
Proof:
 
+
 
+
  
 
==Non-Linear System==
 
==Non-Linear System==
  
 
x[n] <math>\rightarrow</math> system <math>\rightarrow</math> <math>y[n] = x[n]^2</math>
 
x[n] <math>\rightarrow</math> system <math>\rightarrow</math> <math>y[n] = x[n]^2</math>

Revision as of 10:07, 11 September 2008

Linearity

In my own words, a linear system is a system in which superposition applies. For example, if two inputs x1(t) and x2(t) are applied to the system, the output of the system will the sum of the responses to both inputs, y(t) = y1(t) + y2(t).

For example,

x1(t) + x2(t) $ \rightarrow $ system $ \rightarrow $ y(t) = y1(t) + y2(t)


System ECE301Fall2008mboutin.JPG

Linear System

x[n] $ \rightarrow $ system $ \rightarrow $ y[n] = 2x[n]

Proof:

Non-Linear System

x[n] $ \rightarrow $ system $ \rightarrow $ $ y[n] = x[n]^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood