Line 14: | Line 14: | ||
<math>x_3 = ax_1(t) + bx_2(t)</math> | <math>x_3 = ax_1(t) + bx_2(t)</math> | ||
− | <math> | + | <math>w(t) = 4t_3(t)</math> |
<math>=4(ax_1(t) + bx_2(t))</math> | <math>=4(ax_1(t) + bx_2(t))</math> | ||
Line 25: | Line 25: | ||
== non linear system == | == non linear system == | ||
+ | |||
+ | <math>y[n] = 4x[n] + 5</math> | ||
+ | |||
+ | <math>x_1 \rightarrow y_1[n] = 4x_1[n] +5 = 21 </math> | ||
+ | |||
+ | <math>x_2 \rightarrow y_2[n] = 4x_2[n] + 5 = 25</math> | ||
+ | |||
+ | <math>w[n] = 4[x_1[n] + x_2[n]] + 5 = 41</math> | ||
+ | |||
+ | <math>w[n] </math> |
Revision as of 09:51, 11 September 2008
Def of linear system
Linear system is a system that possesses the important property of superposition.(Text book P.53)
linear system
$ y(t) = 4x(t) $
$ x_1(t)\rightarrow y_1(t) = 4x_1(t) $
$ x_2(t)\rightarrow y_2(t) = 4x_2(t) $
$ x_3 = ax_1(t) + bx_2(t) $
$ w(t) = 4t_3(t) $
$ =4(ax_1(t) + bx_2(t)) $
$ =4ax_1(t) + 4bx_2(t) $
$ =ay_1(t) + by_2(t) $
so it is linear
non linear system
$ y[n] = 4x[n] + 5 $
$ x_1 \rightarrow y_1[n] = 4x_1[n] +5 = 21 $
$ x_2 \rightarrow y_2[n] = 4x_2[n] + 5 = 25 $
$ w[n] = 4[x_1[n] + x_2[n]] + 5 = 41 $
$ w[n] $