(Examples of Linear and Non-Linear Systems)
(Examples of Linear and Non-Linear Systems)
Line 5: Line 5:
 
== Examples of Linear and Non-Linear Systems ==
 
== Examples of Linear and Non-Linear Systems ==
  
y(t)= 2x(t)-3x(t)
+
y(t)= 3x(t)
 +
<pre>
 +
x(t)-->|System|-->|*a|
 +
                      >  ax(t)+bx(t)
 +
x(t)-->|System|-->|*b|
 +
</pre>
 +
<pre>
 +
x(t)-->|*a|
 +
          > |System|-->  ax(t)+bx(t)
 +
x(t)-->|*b|
 +
</pre>
 +
y(t)= 3x(t) Results with the same answer given the both equations and is therefore linear.
  
x(t)-->|System|-->|*2|
 
  
x(t)-->|System|-->|*-3|
+
y(t)= 3*sqrt(x(t))
 +
<pre>
 +
x(t)-->|System|-->|*a|
 +
                      >  ax(t)+bx(t)
 +
x(t)-->|System|-->|*b|
 +
</pre>
 +
<pre>
 +
x(t)-->|*a|
 +
          > |System|-->  ax(t)+bx(t)
 +
x(t)-->|*b|
 +
</pre>
 +
y(t)= 3*sqrt(x(t)) yeilds different results in both cases and is therefore Non-linear.

Revision as of 08:59, 11 September 2008

Linear System

A linear system is a system in which you can send the sum of any inputs and when you compare the outputs to the inputs, the outputs contain the same coefficients as the corresponding inputs.

Examples of Linear and Non-Linear Systems

y(t)= 3x(t)

x(t)-->|System|-->|*a|
                       >  ax(t)+bx(t)
x(t)-->|System|-->|*b|
x(t)-->|*a|
           > |System|-->  ax(t)+bx(t)
x(t)-->|*b|

y(t)= 3x(t) Results with the same answer given the both equations and is therefore linear.


y(t)= 3*sqrt(x(t))

x(t)-->|System|-->|*a|
                       >  ax(t)+bx(t)
x(t)-->|System|-->|*b|
x(t)-->|*a|
           > |System|-->  ax(t)+bx(t)
x(t)-->|*b|

y(t)= 3*sqrt(x(t)) yeilds different results in both cases and is therefore Non-linear.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics