(→Example for a linear system) |
(→Example for a linear system) |
||
Line 26: | Line 26: | ||
Let, | Let, | ||
− | <math>{y_1(t)=tsin(t} | + | <math>{y_1(t)=tsin(t)}</math> |
− | </math> | + | |
− | <math>y_2(t)=tcos(t) | + | |
− | </math> | + | <math>y_2(t)=tcos(t)</math> |
Now, | Now, |
Revision as of 15:32, 11 September 2008
Linearity
What is a linear system? A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b$ {\in} $complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). A more mathematical description would be, given two valid inputs
$ {x_1(t)} $
$ {x_2(t)} $
and their respective outputs
$ ({y_1(t)}=h*{x_1(t)} $
$ {y_2(t)}=h*{x_2(t)} $ then a linear system must satisfy
$ {a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}] $
Example for a linear system
Consider, $ {x_1(t)=sin(t)} $
$ {x_2(t)=cos(t)} $
Let,
$ {y_1(t)=tsin(t)} $
$ y_2(t)=tcos(t) $
Now,
(1).$ {a*y_1(t)+b*y_2(t)}={a*tsin(t)+b*tcos(t)} $
And, (2).$ {H[{a*x_1(t)+b*x_2(t)}]}={t{asin(t)+bcos(t)}}={a*tsin(t)+b*tcos(t)} $
Thus since (1) and (2) are the same the system is linear.
Example for non linear system
$ {x_1(t)=t^3} $
$ {x_2(t)=sin(t)} $
$ {y_1(t)={{x_1(t)}^2}} $
$ {y_2(t)={{x_2(t)}^2}} $
Therefore,
(1).$ {a*y_1(t)+b*y_2(t)}={a*{t}^6+b*{sin}^2(t)} $
(2).$ {H[{a*x_1(t)+b*x_2(t)}]}={[{a*{t}^3}+{b*sin(t)}]^2} $
When we observe (1) and (2) we notice that they are not equal. Thus the system is not linear.