(Removing all content from page)
Line 1: Line 1:
 +
==Linearity==
 +
'''What is a linear system?'''
 +
A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b<math>{\in}</math>complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t).
 +
A more mathematical description would be,
 +
given two valid inputs
  
 +
<math>{x_1(t)}</math>
 +
 +
<math>{x_2(t)}</math>
 +
 +
and their respective outputs
 +
 +
<math>({y_1(t)}=h*{x_1(t)}</math>
 +
 +
<math>{y_2(t)}=h*{x_2(t)}</math>
 +
then a linear system must satisfy
 +
 +
<math>{a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}]</math>
 +
 +
==Example for a linear system==
 +
Consider,
 +
<math>{x_1(t)=sin(t)}</math>
 +
 +
 +
<math>{x_2(t)=cos(t)}</math>

Revision as of 11:44, 11 September 2008

Linearity

What is a linear system? A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b$ {\in} $complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). A more mathematical description would be, given two valid inputs

$ {x_1(t)} $

$ {x_2(t)} $

and their respective outputs

$ ({y_1(t)}=h*{x_1(t)} $

$ {y_2(t)}=h*{x_2(t)} $ then a linear system must satisfy

$ {a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}] $

Example for a linear system

Consider, $ {x_1(t)=sin(t)} $


$ {x_2(t)=cos(t)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett