(Removing all content from page) |
|||
Line 1: | Line 1: | ||
+ | ==Linearity== | ||
+ | '''What is a linear system?''' | ||
+ | A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b<math>{\in}</math>complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). | ||
+ | A more mathematical description would be, | ||
+ | given two valid inputs | ||
+ | <math>{x_1(t)}</math> | ||
+ | |||
+ | <math>{x_2(t)}</math> | ||
+ | |||
+ | and their respective outputs | ||
+ | |||
+ | <math>({y_1(t)}=h*{x_1(t)}</math> | ||
+ | |||
+ | <math>{y_2(t)}=h*{x_2(t)}</math> | ||
+ | then a linear system must satisfy | ||
+ | |||
+ | <math>{a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}]</math> | ||
+ | |||
+ | ==Example for a linear system== | ||
+ | Consider, | ||
+ | <math>{x_1(t)=sin(t)}</math> | ||
+ | |||
+ | |||
+ | <math>{x_2(t)=cos(t)}</math> |
Revision as of 11:44, 11 September 2008
Linearity
What is a linear system? A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b$ {\in} $complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). A more mathematical description would be, given two valid inputs
$ {x_1(t)} $
$ {x_2(t)} $
and their respective outputs
$ ({y_1(t)}=h*{x_1(t)} $
$ {y_2(t)}=h*{x_2(t)} $ then a linear system must satisfy
$ {a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}] $
Example for a linear system
Consider, $ {x_1(t)=sin(t)} $
$ {x_2(t)=cos(t)} $