(New page: ==Communative Property for Discrete Time== Given: <math>y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math> #<math>x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math> #<math>k'...)
 
Line 1: Line 1:
 
==Communative Property for Discrete Time==
 
==Communative Property for Discrete Time==
 
Given:
 
Given:
 +
 
<math>y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
 
<math>y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
  
#<math>x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
+
#<math> x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
#<math>k'=n-k</math>
+
#<math> k'=n-k</math>
#<math>x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k'])</math> from 1 and 2
+
#<math> x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k'])</math> from 1 and 2
#<math>x[n]*h[n]=h[n]*x[n]</math>
+
#<math> x[n]*h[n]=h[n]*x[n]</math>

Revision as of 11:15, 16 November 2008

Communative Property for Discrete Time

Given:

$ y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k]) $

  1. $ x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k]) $
  2. $ k'=n-k $
  3. $ x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k']) $ from 1 and 2
  4. $ x[n]*h[n]=h[n]*x[n] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett