(New page: == 6.(A) == This is not time-invariant.<br> 1. input(<math>/delta[n-k]</math>) -> system -> time delay -> output : <math>(k+1)^2/delta[n-(k+2)]</math><br> 2. input(<math>/delta[n-k]</mat...)
 
(6.(B))
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
This is not time-invariant.<br>
 
This is not time-invariant.<br>
  
1. input(<math>/delta[n-k]</math>) -> system -> time delay -> output : <math>(k+1)^2/delta[n-(k+2)]</math><br>
+
1. input(<math>/delta[n-k]</math>) -> system -> time delay (1) -> output : <math>(k+1)^2\delta[n-(k+2)]</math><br>
2. input(<math>/delta[n-k]</math>) -> time delay -> system -> output : <math>(k+2)^2/delta[n-(k+2)]</math><br>
+
2. input(<math>/delta[n-k]</math>) -> time delay (1) -> system -> output : <math>(k+2)^2\delta[n-(k+2)]</math><br>
  
 
The output signals are different each other. So this is not time-invariant.
 
The output signals are different each other. So this is not time-invariant.
 +
 +
 +
== 6.(B) ==
 +
Because of assuming this system is linear, the input should be x[n].

Latest revision as of 17:50, 10 September 2008

6.(A)

This is not time-invariant.

1. input($ /delta[n-k] $) -> system -> time delay (1) -> output : $ (k+1)^2\delta[n-(k+2)] $
2. input($ /delta[n-k] $) -> time delay (1) -> system -> output : $ (k+2)^2\delta[n-(k+2)] $

The output signals are different each other. So this is not time-invariant.


6.(B)

Because of assuming this system is linear, the input should be x[n].

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett