(New page: == 6.(A) == This is not time-invariant.<br> 1. input(<math>/delta[n-k]</math>) -> system -> time delay -> output : <math>(k+1)^2/delta[n-(k+2)]</math><br> 2. input(<math>/delta[n-k]</mat...) |
(→6.(B)) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
This is not time-invariant.<br> | This is not time-invariant.<br> | ||
− | 1. input(<math>/delta[n-k]</math>) -> system -> time delay -> output : <math>(k+1)^2 | + | 1. input(<math>/delta[n-k]</math>) -> system -> time delay (1) -> output : <math>(k+1)^2\delta[n-(k+2)]</math><br> |
− | 2. input(<math>/delta[n-k]</math>) -> time delay -> system -> output : <math>(k+2)^2 | + | 2. input(<math>/delta[n-k]</math>) -> time delay (1) -> system -> output : <math>(k+2)^2\delta[n-(k+2)]</math><br> |
The output signals are different each other. So this is not time-invariant. | The output signals are different each other. So this is not time-invariant. | ||
+ | |||
+ | |||
+ | == 6.(B) == | ||
+ | Because of assuming this system is linear, the input should be x[n]. |
Latest revision as of 17:50, 10 September 2008
6.(A)
This is not time-invariant.
1. input($ /delta[n-k] $) -> system -> time delay (1) -> output : $ (k+1)^2\delta[n-(k+2)] $
2. input($ /delta[n-k] $) -> time delay (1) -> system -> output : $ (k+2)^2\delta[n-(k+2)] $
The output signals are different each other. So this is not time-invariant.
6.(B)
Because of assuming this system is linear, the input should be x[n].