(7 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
A system is called linear if and only if:
 
A system is called linear if and only if:
  
<math>f(ax_1 + bx_2) = af(x_1) + bf(x_2)</math>
+
<math>f(ax_1 + bx_2) = af(x_1) + bf(x_2)\,</math>
  
 
== Example of a linear system ==
 
== Example of a linear system ==
 
System is: <math> f(x) = 23x \,</math>
 
System is: <math> f(x) = 23x \,</math>
 +
 
<math>X_1(t) = t^2 \,</math>
 
<math>X_1(t) = t^2 \,</math>
 +
 
<math>X_2(t) = 2t^2 \,</math>
 
<math>X_2(t) = 2t^2 \,</math>
 +
  
 
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) \,</math>
 
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) \,</math>
<math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \,</math>
+
 
 +
<math>f(at^2 + 2bt^2) = af(t^2) + bf(2t^2) \,</math>
 +
 
 
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math>
 
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math>
 +
 
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math>
 
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math>
 +
 
<math> f(x) = 23x \,</math>
 
<math> f(x) = 23x \,</math>
 +
 +
 +
  
  
 
== Example of a non-linear system ==
 
== Example of a non-linear system ==
 +
System is: <math> f(x) = 23x + 1\,</math>
 +
 +
<math>X_1(t) = t^2 \,</math>
 +
 +
<math>X_2(t) = 2t^2 \,</math>
 +
 +
 +
<math>f(aX_1 + bX_2) \neq af(X_1) + bf(X_2) \,</math>
 +
 +
<math>f(at^2 + 2bt^2) \neq af(t^2) + bf(2t^2) \,</math>
 +
 +
<math>f(at^2 + 2bt^2) \neq a(23t^2+1) + b(23*(2t^2)+1) \,</math>
 +
 +
<math>f(at^2 + 2bt^2) \neq 23 at^2 + 1 + 46 bt^2 + b \,</math>
 +
 +
<math> f(at^2 + 2bt^2) \neq 23 (at^2 + 2bt^2) + a + b \,</math>
 +
 +
<math> f(x) \neq 23x + 1 \,</math>
 +
 +
== Reference ==
 +
 +
 +
http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae

Latest revision as of 16:48, 10 September 2008

Linearity

A system is called linear if and only if:

$ f(ax_1 + bx_2) = af(x_1) + bf(x_2)\, $

Example of a linear system

System is: $ f(x) = 23x \, $

$ X_1(t) = t^2 \, $

$ X_2(t) = 2t^2 \, $


$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $

$ f(at^2 + 2bt^2) = af(t^2) + bf(2t^2) \, $

$ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $

$ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $

$ f(x) = 23x \, $



Example of a non-linear system

System is: $ f(x) = 23x + 1\, $

$ X_1(t) = t^2 \, $

$ X_2(t) = 2t^2 \, $


$ f(aX_1 + bX_2) \neq af(X_1) + bf(X_2) \, $

$ f(at^2 + 2bt^2) \neq af(t^2) + bf(2t^2) \, $

$ f(at^2 + 2bt^2) \neq a(23t^2+1) + b(23*(2t^2)+1) \, $

$ f(at^2 + 2bt^2) \neq 23 at^2 + 1 + 46 bt^2 + b \, $

$ f(at^2 + 2bt^2) \neq 23 (at^2 + 2bt^2) + a + b \, $

$ f(x) \neq 23x + 1 \, $

Reference

http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn