(Part 2 of HW2.1 -- Brian Thomas)
 
(Brian Thomas rhea)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Part 1==
 
==Part 1==
===Problem===
+
I choose Christen Juzeszyn's function <math>f(t)=5 \cos(2t)</math>.
From the homework:
+
<pre>
+
We have seen in class that sampling a CT periodic signal at regular intervals may or may not yield a periodic DT signal, depending on the sampling frequency. Pick a CT periodic signal that was posted on Rhea as part of homework 1, and create two DT signals, one periodic and one non-periodic, by sampling at different frequencies. Post your answer on a Rhea page.
+
</pre>
+
  
===Solution===
+
One DT signal that could be generated from this would be <math>f[n]=5 \cos(2n)</math>.  This DT signal is '''non-periodic'''.  <math> \text{For }k,n \in \mathbb{N}, f[n+k] = 5 \cos(2(n+k)) = 5 \cos(2n+2k)).</math> For f to be periodic, there needs to exist some natural number k (k > 0) such that f[n+k]=f[n].  i.e., <math>5 \cos(2n+2k) = 5 \cos(2n).</math>  For this to be true, we would need to find k such that for all n, <math>2n+2k = 2\pi (2n) \implies k=2\pi (n-1).</math>  However, <math>2\pi (n-1) \notin \mathbb{N}</math> for any n, therefore no valid k exists.
  
  
==Part 2==
+
Another DT signal that could be generated from this would be <math>f[n]=5 \cos(2\pi n)</math>.  This DT signal is '''periodic'''. For instance, let <math>k=1 (k\in\mathbb{N})</math> be the period.  Then, <math>f[n+k]=f[n+1]=5 \cos(2\pi (n+1))=5 \cos(2\pi n+2\pi)=5 \cos(2\pi n)=f[n]\ \forall n\in\mathbb{Z}.</math>
===Problem===
+
From the homework:
+
<pre>
+
One can create a periodic signal by adding together an infinite number of shifted copies of a non-periodic signal periodically (i.e. sum x(t+kT) or x[n+kN]  for all integers k). Pick a non-periodic signal that was posted on Rhea as part of homework 1 and create a periodic signal using this method. Post your answer on a Rhea page.
+
</pre>
+
  
===Solution===
+
 
 +
==Part 2==
 
I chose Ben Horst's function <math>x(t)=\frac{\sin(t)}{t}</math>.  The function <math>\sum_{k \in \mathbb{Z}} x(t+2 \pi k) = \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi k)}{t+2 \pi k} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k}</math> is periodic.
 
I chose Ben Horst's function <math>x(t)=\frac{\sin(t)}{t}</math>.  The function <math>\sum_{k \in \mathbb{Z}} x(t+2 \pi k) = \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi k)}{t+2 \pi k} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k}</math> is periodic.
  
Consider the period <math>P = 2 \pi k</math>.  <math>x(t+P) |_{P=2 \pi} = \sum_{k \in \mathbb{Z}} \frac{\sin(t+P)}{(t+P)+2 \pi k}= \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi)}{(t+2 \pi)+2 \pi k}|_{P=2 \pi} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi (k+1)} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k} = x(t) \forall t \in \mathbb{R}</math>
+
Consider the period <math>P = 2 \pi k</math>.  <math>x(t+P) |_{P=2 \pi} = \sum_{k \in \mathbb{Z}} \frac{\sin(t+P)}{(t+P)+2 \pi k}= \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi)}{(t+2 \pi)+2 \pi k}|_{P=2 \pi} </math>
 +
 
 +
<math>= \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi (k+1)} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k} = x(t) \forall t \in \mathbb{R}</math>

Latest revision as of 16:53, 10 September 2008

Part 1

I choose Christen Juzeszyn's function $ f(t)=5 \cos(2t) $.

One DT signal that could be generated from this would be $ f[n]=5 \cos(2n) $. This DT signal is non-periodic. $ \text{For }k,n \in \mathbb{N}, f[n+k] = 5 \cos(2(n+k)) = 5 \cos(2n+2k)). $ For f to be periodic, there needs to exist some natural number k (k > 0) such that f[n+k]=f[n]. i.e., $ 5 \cos(2n+2k) = 5 \cos(2n). $ For this to be true, we would need to find k such that for all n, $ 2n+2k = 2\pi (2n) \implies k=2\pi (n-1). $ However, $ 2\pi (n-1) \notin \mathbb{N} $ for any n, therefore no valid k exists.


Another DT signal that could be generated from this would be $ f[n]=5 \cos(2\pi n) $. This DT signal is periodic. For instance, let $ k=1 (k\in\mathbb{N}) $ be the period. Then, $ f[n+k]=f[n+1]=5 \cos(2\pi (n+1))=5 \cos(2\pi n+2\pi)=5 \cos(2\pi n)=f[n]\ \forall n\in\mathbb{Z}. $


Part 2

I chose Ben Horst's function $ x(t)=\frac{\sin(t)}{t} $. The function $ \sum_{k \in \mathbb{Z}} x(t+2 \pi k) = \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi k)}{t+2 \pi k} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k} $ is periodic.

Consider the period $ P = 2 \pi k $. $ x(t+P) |_{P=2 \pi} = \sum_{k \in \mathbb{Z}} \frac{\sin(t+P)}{(t+P)+2 \pi k}= \sum_{k \in \mathbb{Z}} \frac{\sin(t+2 \pi)}{(t+2 \pi)+2 \pi k}|_{P=2 \pi} $

$ = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi (k+1)} = \sum_{k \in \mathbb{Z}} \frac{\sin(t)}{t+2 \pi k} = x(t) \forall t \in \mathbb{R} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn