(New page: Image:HW2 6.JPG)
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:HW2 6_ECE301Fall2008mboutin.JPG]]
+
== Part a ==
 +
 
 +
<font size="3">System: <math>X_{k}[n]=\delta[n-k] \to Y_{k}[n] = (k+1)^2 \delta [n-(k+1)]</math>
 +
 
 +
Time-delay: <math>X_{k}[n]=\delta[n-k] \to X_{k}[n-N]=\delta[n-N-k]</math>
 +
 
 +
 
 +
 
 +
<math>X_{k}[n] \to timedelay \to sys \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)]</math>
 +
 
 +
<math>X_{k}[n] \to sys \to timedelay \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)]</math>
 +
 
 +
 
 +
 
 +
Since <math>(k+1)^2 \delta [n-N-(k+1)]</math> is equal to <math>(k+1)^2 \delta [n-N-(k+1)]</math>, the system is time-invariant.</font>
 +
 
 +
== Part b ==
 +
 
 +
<font size="3">In order for <math>Y[n]=u[n-1]</math> to be true, <math>X[n]=u[n]</math> must also be true.
 +
 
 +
Proof:
 +
 
 +
<math>u[n]=\delta[n]-\delta[n-N]</math> where <math>N=1</math>
 +
 
 +
            <math>\delta[n] \to sys \to \delta[n-1] \to</math>
 +
                                      <math>- \to \delta[n-1]-\delta[n-2]=u[n-1]</math>
 +
  <math>\delta[n-N] \to sys \to \delta[n-N-1] \to</math>

Latest revision as of 10:47, 11 September 2008

Part a

System: $ X_{k}[n]=\delta[n-k] \to Y_{k}[n] = (k+1)^2 \delta [n-(k+1)] $

Time-delay: $ X_{k}[n]=\delta[n-k] \to X_{k}[n-N]=\delta[n-N-k] $


$ X_{k}[n] \to timedelay \to sys \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)] $

$ X_{k}[n] \to sys \to timedelay \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)] $


Since $ (k+1)^2 \delta [n-N-(k+1)] $ is equal to $ (k+1)^2 \delta [n-N-(k+1)] $, the system is time-invariant.

Part b

In order for $ Y[n]=u[n-1] $ to be true, $ X[n]=u[n] $ must also be true.

Proof:

$ u[n]=\delta[n]-\delta[n-N] $ where $ N=1 $

           $ \delta[n] \to sys \to \delta[n-1] \to $
                                     $ - \to \delta[n-1]-\delta[n-2]=u[n-1] $
 $ \delta[n-N] \to sys \to \delta[n-N-1] \to $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva