(Part(a))
(Part(a))
 
(5 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 +
  
 
Recall geometric series:
 
Recall geometric series:
  
<math> \sum </math>
 
  
for |x| < 1
+
<math> \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x}</math>  for |x| < 1
 +
 
 +
 
 +
<math> P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} </math>
 +
 
 +
 
 +
Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Latest revision as of 16:09, 9 September 2008

Part(a)

     Show that P(B) > P(C) > P(T) > P(A):

- P(H) = p , 0 < p < 1

$ P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} $


Recall geometric series:


$ \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x} $ for |x| < 1


$ P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} $


Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman