(New page: == Questions == <math>Y(t) = x(t - 1) - x(1 - t)</math> It is Time Invariant? Justify. == Answer == No. <math>S_1 = Y(t) = x(t - 1) - x(1 - t)</math> <math>S_2 = Y(t) = x(t - t_o)...) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:Fall 2008]] | ||
+ | [[Category:mboutin]] | ||
+ | [[Category:problem solving]] | ||
+ | |||
== Questions == | == Questions == | ||
− | + | The input x(t) and the output Y(t) of a system are related by the equation | |
<math>Y(t) = x(t - 1) - x(1 - t)</math> | <math>Y(t) = x(t - 1) - x(1 - t)</math> | ||
− | + | Is the system Time Invariant? Justify your answer. | |
− | + | ||
− | + | ||
== Answer == | == Answer == | ||
Line 21: | Line 24: | ||
<math> x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o)</math> | <math> x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o)</math> | ||
+ | ---- |
Latest revision as of 15:40, 23 April 2013
Questions
The input x(t) and the output Y(t) of a system are related by the equation
$ Y(t) = x(t - 1) - x(1 - t) $
Is the system Time Invariant? Justify your answer.
Answer
No.
$ S_1 = Y(t) = x(t - 1) - x(1 - t) $
$ S_2 = Y(t) = x(t - t_o) $
$ x(t) -> S1 -> S2 -> x(t - t_o - 1) - x(1 - t + t_o) $
$ x(t) -> S2 -> S1 -> x(t - t_o - 1) - x(1 - t - t_o) $
$ x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o) $