(New page: == Questions == <math>Y(t) = x(t - 1) - x(1 - t)</math> It is Time Invariant? Justify. == Answer == No. <math>S_1 = Y(t) = x(t - 1) - x(1 - t)</math> <math>S_2 = Y(t) = x(t - t_o)...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE301]]
 +
[[Category:Fall 2008]]
 +
[[Category:mboutin]]
 +
[[Category:problem solving]]
 +
 
== Questions ==
 
== Questions ==
 
+
The input x(t) and the output Y(t) of a system are related by the equation
  
 
<math>Y(t) = x(t - 1) - x(1 - t)</math>
 
<math>Y(t) = x(t - 1) - x(1 - t)</math>
  
  
It is Time Invariant? Justify.
+
Is the system Time Invariant? Justify your answer.
 
+
 
+
 
== Answer ==
 
== Answer ==
  
Line 21: Line 24:
  
 
<math> x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o)</math>
 
<math> x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o)</math>
 +
----

Latest revision as of 15:40, 23 April 2013


Questions

The input x(t) and the output Y(t) of a system are related by the equation

$ Y(t) = x(t - 1) - x(1 - t) $


Is the system Time Invariant? Justify your answer.

Answer

No.

$ S_1 = Y(t) = x(t - 1) - x(1 - t) $

$ S_2 = Y(t) = x(t - t_o) $

$ x(t) -> S1 -> S2 -> x(t - t_o - 1) - x(1 - t + t_o) $

$ x(t) -> S2 -> S1 -> x(t - t_o - 1) - x(1 - t - t_o) $

$ x(t - t_o - 1) - x(1 - t + t_o) =/= x(t - t_o - 1) - x(1 - t - t_o) $


Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn