(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Time Invariant.
 
Time Invariant.
A system is time-invariant as long as the system shows certain fixed behaviors over time. For example, when x(t) shifts by a constant, y(t) should shift by the same constant.<br>
+
A system is time-invariant as long as the system shows certain fixed behaviors over time. For example, when x(t) shifts by a constant, y(t) should shift by the same constant.<br><br>
 
<math> y = x(t) </math><br>
 
<math> y = x(t) </math><br>
<math> x2 = x(t-t0) </math><br>
+
<math> x2 = x(t-t0) </math><br><br>
 
Then<br>
 
Then<br>
 
<math> y(t-t0) = x(t-t0)</math>
 
<math> y(t-t0) = x(t-t0)</math>
 
<br>
 
<br>
Also, the following should satisfy. <br>
+
Also, the following should satisfy. <br><br>
 
<math> y = x(t) </math><br>
 
<math> y = x(t) </math><br>
 
<math> x2 = x(2t) </math><br>
 
<math> x2 = x(2t) </math><br>
 
Then<br>
 
Then<br>
 
<math> y(2t) = x(2t) </math><br>
 
<math> y(2t) = x(2t) </math><br>
 +
 +
== Example of Time-Invariant System ==
 +
<br>
 +
<math> y = sin(x) = sin(x(t)) </math><br><br>
 +
When x(t) shifts by a constant t0, <br>
 +
<math> x2(t) = x(t-t0) </math><br><br>
 +
Then y(t) responds accordingly to the shift. <br>
 +
<math> y2(t) = sin(x2) = sin(x(t-t0)) </math><br>
 +
While maintaining, <math> y2(t) = y(t-t0) </math><br>
 +
 +
== Example of Time-Variant System ==
 +
<br>
 +
<math> y = t * sin(x) = t * sin(x(t)) </math><br><br>
 +
When x(t) shifts by a constant t0, <br>
 +
<math> x2(t) = x(t-t0) </math><br><br>
 +
Then y(t) does not respond accordingly to the shift. <br>
 +
<math> y2(t) = t * sin(x2) = t * sin(x(t-t0)) </math><br>
 +
Which is not equal to <math> y2(t) = y(t-t0) = (t - t0) * sin(x(t-to)) </math><br>

Latest revision as of 14:57, 11 September 2008

Time Invariant. A system is time-invariant as long as the system shows certain fixed behaviors over time. For example, when x(t) shifts by a constant, y(t) should shift by the same constant.

$ y = x(t) $
$ x2 = x(t-t0) $

Then
$ y(t-t0) = x(t-t0) $
Also, the following should satisfy.

$ y = x(t) $
$ x2 = x(2t) $
Then
$ y(2t) = x(2t) $

Example of Time-Invariant System


$ y = sin(x) = sin(x(t)) $

When x(t) shifts by a constant t0,
$ x2(t) = x(t-t0) $

Then y(t) responds accordingly to the shift.
$ y2(t) = sin(x2) = sin(x(t-t0)) $
While maintaining, $ y2(t) = y(t-t0) $

Example of Time-Variant System


$ y = t * sin(x) = t * sin(x(t)) $

When x(t) shifts by a constant t0,
$ x2(t) = x(t-t0) $

Then y(t) does not respond accordingly to the shift.
$ y2(t) = t * sin(x2) = t * sin(x(t-t0)) $
Which is not equal to $ y2(t) = y(t-t0) = (t - t0) * sin(x(t-to)) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman