m (started page)
 
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
part E on its way
+
[[Homework 2_ECE301Fall2008mboutin|<< Back to Homework 2]]
 +
 
 +
Homework 2 Ben Horst:  [[HW2-A Ben Horst _ECE301Fall2008mboutin| A]]  ::  [[HW2-B Ben Horst _ECE301Fall2008mboutin| B]]  ::  [[HW2-C Ben Horst _ECE301Fall2008mboutin| C]]  ::  [[HW2-D Ben Horst _ECE301Fall2008mboutin| D]]  ::  [[HW2-E Ben Horst _ECE301Fall2008mboutin| E]]
 +
----
 +
 
 +
Given the system
 +
 
 +
<table>
 +
  <tr>
 +
    <td>Input</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>Output</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X0[n]=&delta;[n]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y0[n]=&delta;[n-1]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X1[n]=&delta;[n-1]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y1[n]=4&delta;[n-2]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X2[n]=&delta;[n-2]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y2[n]=9 &delta;[n-3]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X3[n]=&delta;[n-3]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y3[n]=16 &delta;[n-4]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>...</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>    ...</td>
 +
  </tr>
 +
  <tr>
 +
    <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Yk[n]=(k+1)2 &delta;[n-(k+1)] </td>
 +
  </tr>
 +
</table>
 +
For any non-negative integer k
 +
 
 +
==Test for Time Invariance==
 +
Start with X2[n]=&delta;[n-2]
 +
 
 +
Delay the signal by 2 => X2[n] = &delta;[n-4]
 +
 
 +
Then run the signal through the system:
 +
 
 +
X2[n] = &delta;[n-4] -> system -> Y2 = 25&delta;[n-5]
 +
 
 +
 
 +
Repeat in reverse...
 +
 
 +
Run the signal through the system:
 +
 
 +
X2[n]=&delta;[n-2] -> system -> Y2 = 9&delta;[n-3]
 +
 
 +
Then delay the signal by 2 => Y2 = 9&delta;[n-5]
 +
 
 +
 
 +
Since 9&delta;[n-5] &ne; 25&delta;[n-5], the system is not Time Invariant.
 +
 
 +
 
 +
 
 +
==Second Part==
 +
 
 +
Question:  Assuming that this system is linear, what input X[n] would yield the output Y[n]=u[n-1]?
 +
 
 +
X[n] = u[n] would yield Y[n]=u[n-1] since u[n] is simply the sum of shifted delta functions, and linearity dictates that they could be sent through the system (producing &delta;[n-1]'s) and then summed after the fact to give Y[n]=u[n-1].

Latest revision as of 13:22, 11 September 2008

<< Back to Homework 2

Homework 2 Ben Horst: A  :: B  :: C  :: D  :: E


Given the system

Input      Output
X0[n]=δ[n]  ->   Y0[n]=δ[n-1]
X1[n]=δ[n-1]  ->   Y1[n]=4δ[n-2]
X2[n]=δ[n-2]  ->   Y2[n]=9 δ[n-3]
X3[n]=δ[n-3]  ->   Y3[n]=16 δ[n-4]
...       ...
Xk[n]=δ[n-k]  ->   Yk[n]=(k+1)2 δ[n-(k+1)]

For any non-negative integer k

Test for Time Invariance

Start with X2[n]=δ[n-2]

Delay the signal by 2 => X2[n] = δ[n-4]

Then run the signal through the system:

X2[n] = δ[n-4] -> system -> Y2 = 25δ[n-5]


Repeat in reverse...

Run the signal through the system:

X2[n]=δ[n-2] -> system -> Y2 = 9δ[n-3]

Then delay the signal by 2 => Y2 = 9δ[n-5]


Since 9δ[n-5] ≠ 25δ[n-5], the system is not Time Invariant.


Second Part

Question: Assuming that this system is linear, what input X[n] would yield the output Y[n]=u[n-1]?

X[n] = u[n] would yield Y[n]=u[n-1] since u[n] is simply the sum of shifted delta functions, and linearity dictates that they could be sent through the system (producing δ[n-1]'s) and then summed after the fact to give Y[n]=u[n-1].

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett