Line 18: Line 18:
  
 
<math>e^{x[n+k]} = e^{x[n+k]}</math>
 
<math>e^{x[n+k]} = e^{x[n+k]}</math>
 +
  
 
Therefore, the system is time-invariant.
 
Therefore, the system is time-invariant.
Line 39: Line 40:
  
 
<math>sin(x[2n+k]) \ne sin(x[2n + 2k])</math>
 
<math>sin(x[2n+k]) \ne sin(x[2n + 2k])</math>
 +
  
 
Therefore, the system is time-variant.
 
Therefore, the system is time-variant.

Latest revision as of 18:53, 8 September 2008

Definition: Time Invariance

A system is time invariant if any input that is first shifted and then put through the system yields the same result as putting the signal through the system first and then shifting the output, provided the magnitude of the shift is the same in both instances.

Example 1: Time-Invariant System

$ y[n] = e^{x[n]} $


Let

$ z[n] = x[n+k] $

$ a = n + k $


$ y[z[n]] $ =?= $ y[a] $

$ e^{z[n]} $ =?= $ e^{x[a]} $

$ e^{x[n+k]} = e^{x[n+k]} $


Therefore, the system is time-invariant.

Example 2: Time-Variant System

$ y[n] = sin(x[2n]) $


Let

$ z[n] = x[n+k] $

$ a = n + k $


$ y[z[n]] $ =?= $ y[a] $

$ sin(z[2n]) $ =?= $ sin(x[2a]) $

$ sin(x[2n+k]) $ =?= $ sin(x[2(n+k)]) $

$ sin(x[2n+k]) \ne sin(x[2n + 2k]) $


Therefore, the system is time-variant.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood