(Linear system)
(Example of Linear system)
 
Line 3: Line 3:
  
 
== Example of Linear system ==
 
== Example of Linear system ==
y1(t) = T{x1(t)}<br>
+
system T : y = 2x(t)
y2(t) = T(x2(t))<br>
+
W(t) a*T{x1(t)} + a*T{x(2)}<br>
+
  
Y(t) = T{a*x1(t) + a*x2(t)}<br>
+
y1(t) = 2x1(t) <br>
 +
y2(t) = 2x2(t) <br>
 +
W(t) = 2x1(t) + 2x2(t) <br>
 +
Y(t) = 2(x1(t) + x2(t)) = 2x1(t) + 2x2(t) <br>
 +
W(t) = Y(t) <br>
  
If W(t) eaquals to Y(t), System T is linear system.
+
Therefore, this is linear system.
 +
 
 +
== Example of Non-linear system ==
 +
 
 +
system H : y=2x(t) + 5
 +
 
 +
y1(t) = 2x1(t) + 5
 +
 
 +
y2(t) = 2x2(t) + 5
 +
 
 +
W(t) = 2x1(t) + 2x2(t) + 10
 +
 
 +
Y(t) = 2(x1(t) + x2(t)) + 5
 +
 
 +
W(t) != Y(t)
 +
 
 +
Therefore, this is Non-linear system.
  
 
== Example of non-linear system ==
 
== Example of non-linear system ==

Latest revision as of 07:05, 6 September 2008

Linear system

Linear system is a system that satisfies a principle of superpositon.

Example of Linear system

system T : y = 2x(t)

y1(t) = 2x1(t)
y2(t) = 2x2(t)
W(t) = 2x1(t) + 2x2(t)
Y(t) = 2(x1(t) + x2(t)) = 2x1(t) + 2x2(t)
W(t) = Y(t)

Therefore, this is linear system.

Example of Non-linear system

system H : y=2x(t) + 5

y1(t) = 2x1(t) + 5

y2(t) = 2x2(t) + 5

W(t) = 2x1(t) + 2x2(t) + 10

Y(t) = 2(x1(t) + x2(t)) + 5

W(t) != Y(t)

Therefore, this is Non-linear system.

Example of non-linear system

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison