(New page: == Linear system == Linear system is a system that satisfies a principle of superpositon. For example, if sinusoid signal is input of a linear system, the frequency of output signal is no...) |
(→Example of Linear system) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
== Linear system == | == Linear system == | ||
− | Linear system is a system that satisfies a principle of superpositon | + | Linear system is a system that satisfies a principle of superpositon. |
== Example of Linear system == | == Example of Linear system == | ||
− | y1(t) = | + | system T : y = 2x(t) |
− | y2(t) = | + | |
− | W(t) | + | y1(t) = 2x1(t) <br> |
+ | y2(t) = 2x2(t) <br> | ||
+ | W(t) = 2x1(t) + 2x2(t) <br> | ||
+ | Y(t) = 2(x1(t) + x2(t)) = 2x1(t) + 2x2(t) <br> | ||
+ | W(t) = Y(t) <br> | ||
+ | |||
+ | Therefore, this is linear system. | ||
+ | |||
+ | == Example of Non-linear system == | ||
+ | |||
+ | system H : y=2x(t) + 5 | ||
+ | |||
+ | y1(t) = 2x1(t) + 5 | ||
+ | |||
+ | y2(t) = 2x2(t) + 5 | ||
+ | |||
+ | W(t) = 2x1(t) + 2x2(t) + 10 | ||
+ | |||
+ | Y(t) = 2(x1(t) + x2(t)) + 5 | ||
+ | |||
+ | W(t) != Y(t) | ||
− | + | Therefore, this is Non-linear system. | |
− | + | == Example of non-linear system == |
Latest revision as of 07:05, 6 September 2008
Contents
Linear system
Linear system is a system that satisfies a principle of superpositon.
Example of Linear system
system T : y = 2x(t)
y1(t) = 2x1(t)
y2(t) = 2x2(t)
W(t) = 2x1(t) + 2x2(t)
Y(t) = 2(x1(t) + x2(t)) = 2x1(t) + 2x2(t)
W(t) = Y(t)
Therefore, this is linear system.
Example of Non-linear system
system H : y=2x(t) + 5
y1(t) = 2x1(t) + 5
y2(t) = 2x2(t) + 5
W(t) = 2x1(t) + 2x2(t) + 10
Y(t) = 2(x1(t) + x2(t)) + 5
W(t) != Y(t)
Therefore, this is Non-linear system.