(New page: ==Periodic Funtion== A periodic funtion is one that satisfies the condition :<math> x(t+T)= x(t)\,</math> '''Example''' ==Non-Periodic Funtion== A non-periodic funtion is one ...) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | =Periodic versus non-periodic functions ([[Homework_1_ECE301Fall2008mboutin|hw1]], [[ECE301]])= | ||
+ | <span style="color:green"> Read the instructor's comments [[hw1periodicECE301f08profcomments|here]]. </span> | ||
+ | |||
==Periodic Funtion== | ==Periodic Funtion== | ||
Line 8: | Line 11: | ||
'''Example''' | '''Example''' | ||
− | + | <math>\sin(t+2\pi) = \sin(t).\cos(2\pi) + \sin(2\pi).\cos(t) = \sin(t)\,</math> | |
− | + | ||
− | + | ||
− | + | ||
Line 23: | Line 23: | ||
'''Example''' | '''Example''' | ||
+ | |||
+ | <math></math> |
Latest revision as of 06:12, 14 April 2010
Periodic versus non-periodic functions (hw1, ECE301)
Read the instructor's comments here.
Periodic Funtion
A periodic funtion is one that satisfies the condition
- $ x(t+T)= x(t)\, $
Example
$ \sin(t+2\pi) = \sin(t).\cos(2\pi) + \sin(2\pi).\cos(t) = \sin(t)\, $
Non-Periodic Funtion
A non-periodic funtion is one that does NOT satisfy the condition
- $ x(t+T)= x(t)\, $
Example